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Abstract 

 

The cost and schedule advantages small satellites have over larger legacy systems 

have been studied for years, but there has been very little experimentation performed to 

determine whether small satellites can actually deliver the capabilities of larger 

spacecraft. To date, a desired operational capability has not been fully realized by a 

scalable satellite design. Advances in sensor technology have led to significant reductions 

in size, weight, and power (SWaP) presenting an opportunity to exploit the evolution of 

space operations by using small satellites to perform specific missions. This paper 

describes a methodology developed to map a specific set of defined large space vehicle 

capabilities to a constellation of small satellites. The process includes an analysis of user 

needs, capability gaps, and examines the utility of advanced sensors. This leads to 

determining: number of satellites; orbit geometry; sensor configurations; and the satellite 

bus.  

Space weather has been identified as an excellent mission to exploit the potential 

of small satellites. Advances in commercial micro-electronics have produced sensors 

with reduced SWaP, making them viable test subjects. Therefore, mapping capabilities to 

a small satellite, or constellation of small satellites, could provide solutions and 

affordable options to the adverse challenges facing space operations. The methodology 

developed here selects sensor of the National Polar-Orbiting Environmental Satellite 

System (NPOESS) Space Environmental Sensor Suite (SESS) and maps it to a CubeSat  

illustrating a small satellite can perform an operational mission. 
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SATELLITE CAPABILITIES MAPPING – UTILIZING SMALL SATELLITES 

 

 

1.  Introduction 

1.1  Background 

The space industry faces significant challenges in the years to come due to 

increasing costs and delayed schedules.  In fact: 

Estimated costs for major space acquisition programs have increased by about 

$10.9 billion from initial estimates for fiscal years 2008 through 2013.  In several 

cases, DOD has had to cut back on quantity and capability in the face of 

escalating costs.  Several causes behind the cost growth and related problems 

consistently stand out.  First, DOD starts more weapons programs than it can 

afford creating competition for funding that, in part, encourages low cost 

estimating and optimistic scheduling. Second, DOD has tended to start its space 

programs before it has the assurance that the capabilities it is pursuing can be 

achieved within available resources [1]. 

These cost over-runs will consume future funds if the program is kept alive, 

and/or lead to reducing the capability in order to control the cost.  The greatest impact 

resulting from this trend is the loss of capabilities.  The United States has invested 

decades of human and monetary resources to evolve our dominance in space to its current 

level which requires our capabilities to greatly exceed those of our adversaries.  The 

United States definitely wants to avoid the stagnation of their space capabilities while 

adversaries continue to advance their own.   

The entire space industry must adapt to more austere economic conditions and 

develop more efficient practices not only to reduce costs but deliver at the original 

estimate. In any other market, product lines that continually evolve their core 

technologies are strongest. They create the natural expectation that greater, more 

advanced, capabilities will continue to be produced at a lower price over time. The 

argument that space acquisitions and operations are more complex and difficult, thus 
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demanding more resources than other industries, is a hard sell when consumers can easily 

obtain the functionality (capability) found in today‟s smart phones. Of course, a smart 

phone and a satellite are significantly different; however, it is the evolution of technology 

demonstrated by smart phones that consumers and taxpayers have grown to expect. The 

space industry will, by default, be held to those same expectations.  

In 1994, a presidential decision directive was issued combining civil and military 

polar-orbiting satellite systems into a single operational program known as the National 

Polar-orbiting Operational Environmental Satellite System (NPOESS).  NPOESS was a 

tri-agency program with Department of Defense (DOD), National Oceanic and 

Atmospheric Administration (NOAA), and National Aeronautics and Space 

Administration (NASA).  The goal was to reduce costs, duplication of efforts, and 

streamline schedules while developing and operating the nation‟s next generation of 

weather satellites.  Unfortunately, on 1 February 2010 the president‟s FY11 budget 

dismantled the NPOESS program [2] after it had exceeded the original cost estimate by 

over 100% and several years [1].  The problems and impacts of the NPOESS program 

will be discussed in more detail in a later section.  

The NPOESS program illustrates the problems plaguing space acquisitions.  The 

dismantling of NPOESS will reduce space weather monitoring capabilities (i.e. producing 

capability gaps) which is a more significant impact than the lost financial investment.  In 

April of 2010, The Government Accountability Office (GAO) released a report 

discussing the need for a strategy to sustain critical climate and space measurements.  

The report shows that federal agencies lack a strategy for the long-term provision of 

space weather (SWx) data [3].  “The expected gaps in coverage for the instruments 
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removed range from 1 to 11 years, and begin as soon as 2015” [3].  The SWx monitoring 

capability gap that now looms on the horizon demands a strategy that employs a process 

to develop a solution that addresses these needs.  

“Space weather can adversely affect satellite operations, gathering of intelligence, 

communications, space-based and ground-based radar, Position Navigation & Timing 

(PNT), high altitude manned flight, and electrical power distribution grids.  Space 

Weather support is important to the DoD because military operations are increasingly 

reliant on space and ground systems that are susceptible to failure or degraded 

performance during extreme space weather conditions.  These increased user demands 

will drive SWx support needs to provide specifications, alerts and forecasts that have 

improved accuracy, timeliness, coverage, and confidence. [4]”.  The capability to monitor 

and forecast space weather needs to remain a high national priority.  Without it, other 

capabilities utilized by both the commercial and government sectors could be impacted. 

1.2  Capability Gap Looms on the Horizon 

The gap resulting from the dismantled NPOESS program is not the only SWx 

problem facing the United States.  The Defense Meteorological Satellite Program (DMSP 

and Polar Operational Environmental Satellite (POES) programs currently monitor and 

collect atmospheric and terrestrial environmental data.  The final DMSP spacecraft is 

expected to retire in 2020 and POES will reach the end of its tenure in 2013 [5].  In 1999, 

the national requirements for SWx products were found to be outdated, fragmented, and 

incomplete.  In addition, it was noted that requirements must be revised as user needs and 

technology evolve [4].  Not only has space acquisitions failed to evolve the requirements 

but also have failed to develop a strategy or process that would lead to a solution.  It is 
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safe to say that there is an increasing sense of urgency to develop a solution to the SWx 

monitoring capability gap.  The obvious fact is that another multiple year space 

acquisition program will not suffice.  It‟s time to think outside the current paradigm.  

1.3  Maturing Solution 

The need to monitor SWx is evident; however, the acquisition process employed 

when developing and launching a satellite, let alone a constellation, has continued to 

disappoint.  Small satellites (smallsats) have become more attractive due to their size and 

weight, but still have limitations, primarily related to payload capacity. Even with their 

limitations, smallsats have sparked interest with universities, commercial companies, and 

government organizations because of their ability to perform low cost on-orbit 

experiments and demonstrations. As their capabilities continue to mature, they present a 

limited solution in some mission areas of interest to the space community but at this time, 

certainly not all. The SWx monitoring mission has been identified as a strong potential 

application of smallsats [11].   

Space weather sensors have advanced their capabilities while reducing their size, 

weight, and power (SWaP). There are several SWx sensors ranging from low to high 

technology readiness levels (TRLs) that are compatible with satellites as small as a 

nanosat (e.g. the CubeSat bus).  The gap resulting from NPOESS requires a rapid 

solution and not another four to six year satellite procurement program.  

1.4  Research Focus 

The acquisition community has continued to develop satellites using the same 

method for several decades [1].  The DOD attempted to reform acquisitions in the 1990s 

by giving more oversight and key-decision making responsibilities to contractors.  The 
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unfortunate result was less reporting which kept problems in the dark until it was too late 

to make the necessary changes [7].   

A new approach is desperately needed; however, the beginning of an evolution in 

spacecraft design may have already begun simply by returning to its origins.  After 

decades of increasing the size of a satellite to add more and more capabilities, smaller 

satellites are getting more attention and growing in utility.  Most notable is the CubeSat 

bus.  The CubeSat has become useful to universities, research labs, and government and 

private organizations as a means of on-orbit testing for sensors and performing 

experiments.  In addition, the Defense Advanced Research Projects Agency (DARPA) is 

pursuing a concept known as “fractionation” which decomposes a large monolithic 

spacecraft into modules to be flown in clusters [8].  Thus, at this time, many efforts are 

trying to reduce the size, weight, and power (SWaP) of satellite payloads and separate 

satellites into modules, for reasons that will be discussed later in more detail.  However, 

there is no process of mapping the capabilities of these large monolithic satellites to small 

sensors that could be flown on a cluster of modules or constellation of CubeSats.  With 

several programs losing capabilities for cost and schedule reasons, it is a good time to be 

innovative and utilize this new paradigm to create a solution that delivers a needed 

capability. 

While no capability mapping process can be found with that specific title, the 

process of mapping a capability from a large legacy system to a modern smaller system is 

not new.  The computer electronics market has demonstrated a capability evolution 

process similar to capabilities mapping.  Early computers, such as the xxx, were large, 

heavy, consumed a lot of power, and had very limited processing and storage capability.  
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However, the evolution and advancement of microelectronics allows all of those 

attributes to be reduced.  Today, the capabilities available with a smartphone combine 

capabilities previously available by separate units and deliver better performance while 

being smaller, lighter and consuming less power.  The evolution of technology provides a 

lot of promise and support to the reduction of spacecraft while maintaining various 

capabilities. 

This thesis discusses the development of a process that maps the capabilities of a 

large monolithic spacecraft to one or more small satellites by taking advantage of 

advanced low SWaP sensors and a standardized CubeSat bus.  The specific example is to 

deliver a representative solution to the de-manifested SESS.  The process presented here 

will utilize advanced low SWaP sensors and use the CubeSat bus to propose performing a 

specific operational mission. The ability to rapidly map a capability to a small satellite 

that at least meets the threshold of the original requirements presents stakeholders with an 

option to maintain an otherwise at-risk or lost capability.   

1.5  Investigative Questions 

As with any new idea, the first question that is always asked is “why”.  Why does 

the engineering community need another process to guide the development of satellites?  

To answer this common basic question, the process developed here is only partially new.  

Capabilities mapping borrows techniques from existing processes used by the 

engineering and acquisition community to determine specific needs and system 

requirements.  During the formulation of an acquisition program engineers perform an 

analysis of alternatives (AoA) and throughout the life-cycle conduct trade studies [7].  

Each tool has techniques that enable in-depth analyses of system requirements, the 
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resulting planned capabilities, and viable alternatives.  Capabilities mapping will utilize 

these techniques to determine if the planned capabilities can be performed on an 

alternative platform, in this case a smaller platform.  The revised question is, “can the 

system‟s capability be performed by a „smaller‟ platform with comparable results?”  This 

is another alternative and may require trades; however it specifically and intentionally 

targets a smaller platform and requires a process not exactly duplicative of an AoA or 

trade study.  In addition, the capabilities mapping process benefits from the results of the 

already performed analyses, e.g. system requirements, thresholds and objectives, orbital 

parameters.  A few characteristics will change due to the size of the final solution, thus 

having the information that does not change will only expedite the process. 

The justification and benefits for performing the capability of a large satellite on a 

smaller satellite has been discussed.  To develop such a repeatable capabilities mapping 

process, a few investigative questions need to be formulated to guide the task. 

Investigative Question #1: 

Can a repeatable process be developed to map a large monolithic spacecraft capability 

to a CubeSat bus? 

Investigative Question #2: 

Does a sensor compatible with the CubeSats bus exist and meet the threshold 

performance specification of a larger system? 

Investigative Question #3: 

Can a constellation of CubeSats perform an operational mission? 
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The answer to these questions would provide a tool that would benefit the space 

industry.  Combining this tool with the concept of “fractionated” spacecraft, discussed in 

a later section, could evolve the space industry into a new way of doing business.   

Once created, the process will be applied to a selected sensor from the de-

manifested SESS from the NPOESS program that has been noted as critical to our space 

monitoring mission.  The capabilities mapping process will map the Thermal Particle 

Sensor (TPS) to a constellation of CubeSats to determine if the small sensors can perform 

the original mission.  CubeSats have been utilized for on-orbit experiments and testing 

but never to perform an operational mission.  The success would be twofold; the 

constellation would fill a critical capability gap and mark a significant advancement for 

the CubeSat bus. 

1.6  Methodology 

When a program removes a capability or recognizes one late in the program‟s 

acquisition cycle, it should not just be left behind, put on a shelf, or forgotten.  Instead, if 

it performs a critical function or could be launched on another smaller platform at a lower 

cost, then a methodology should exist that enables stakeholders to develop that low-cost 

and simple solution. 

Capabilities mapping seeks to combine the techniques of different independent 

analyses and processes into a sequence of steps that lead to implementing a small satellite 

solution.  The process will perform a system decomposition to isolate the equipment that 

performs the capability of interest followed by a functional decomposition to separate it 

into its most basic functions, i.e one task per function.  Of, course, an alternate low SWaP 

sensor must exist that is able to perform these functions.  The sensor‟s performance will 
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be analyzed against the original equipment specifications (if available) or key 

performance parameters (KPP) to determine its utility.  If the sensor performance is 

acceptable then it should be integrated into the required number of CubeSats, that is if 

more than one is required.  If the performance does not meet threshold value, then a trade 

between the performance, cost, and complete loss of the original (or future) capability 

will have to be reviewed and considered by stakeholders.  If stakeholders face a 

capability gap and a low-cost solution delivers 70% (for example) of the desired 

capability then perhaps it is better to field 70% than nothing at all.  The integration of the 

sensor onto the CubeSat bus completes the process but the data received once the 

CubeSat is on orbit will determine if the solution is successful.   

1.7  Summary 

There are numerous reports and studies in addition to those used as references 

supporting this thesis that illustrate the cost and schedule challenges for future space 

acquisition programs.  Increases in costs and schedules are bad but delivering fewer 

capabilities and, possibly, spacecraft is unacceptable [1].  The space industry needs to 

learn from past practices and implement backup procedures to the extent possible.  The 

Air Force) is urgently seeking a solution to the NPOESS problems which began, and 

hence was visible by top level executives, in 2005.  Regardless of where the breakdown 

occurred, a solution is needed and quickly.  The opportunity created by this dilemma is 

the motivation of this thesis.  If the process of mapping the needed but de-manifested 

capabilities of the SESS, or a selected instrument as a demonstrator, is successful then it 

could be applied to other systems for which smaller and capable sensors exist.  

Considering the rate at which other countries are experimenting, successfully, with small 
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satellites, the space industry needs to consider new acquisition practices even if it only 

means small satellites are considered as a backup.   

This thesis will provide a process that will advance the evolution of small 

satellites being utilized to perform the operational capabilities of larger satellite systems.  

The structure for presenting this process begins with research into the growing interest in 

small satellites, the impact of space weather on space-based assets, innovative technology 

being developed by industry and academia, the evolution of capabilities in smaller 

packages, and lastly, a standardized spacecraft bus and components.  The next part of this 

thesis takes this research and develops a process that maps a large-scale satellite 

capability to a like capability on a small satellite maintaining traceability back to the 

original satellite.  This thesis then closes by analyzing and discussing the contribution the 

capabilities mapping process makes to the space acquisitions community and the body of 

knowledge.  A recommendation for future research and next steps for the mapping 

process will conclude the thesis.    
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2. Current Research and Literature 

2.1  Chapter Overview 

 “Today‟s national security satellites are a far cry from the relatively small and 

simple satellites that were flown in the early days of military space” [11].  The quantity 

of capabilities on current satellites out numbers those on legacy systems.  In the pursuit of 

a large number of highly advanced capabilities, the spacecraft development becomes 

more complex, employs redundant systems to reduce risk, require longer schedules, and 

in the end is left with little margin for error.  These are just a few of the many reasons the 

space industry must begin to study alternative paths by which standardized commercial 

off the shelf equipment can be utilized, evaluate and accept what capabilities are good 

enough, and apply new methods to delivering those capabilities.   The space industry, 

academia, and the Department of Defense have engaged in many advanced research and 

development efforts aimed at improving various areas of spacecraft development, i.e. bus 

and payloads.  Likewise, specific mission areas that are best suited for smaller satellites 

developed for specific missions have been researched and identified.  A discussion of 

selected studies performed to understand these problems and the research attempting to 

provide solutions is provided in the sections that follow.  The capabilities mapping 

process will make use of the many diverse efforts by employing the successes of 

academia and industry in the mapping of large-scale capabilities to small satellites and 

tracing back to an operational mission.  By showing small satellite capabilities (sensors) 

have much of the same functionality in specific mission areas, the space community will 

continue to take more interest in smaller satellite solutions.  Unfortunately, the successes 

with small sensors of industry and academia do not trace back to the mission area of a 
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comparable large, legacy system.  Many academic experiments address space weather but 

none of them trace back to the capability on a DMSP satellite.  Without that, the 

experiments are tried, tested, and forgotten once they de-orbit.  If successful, they should 

be considered for an operational mission, even if only for a short duration. 

2.2  The Resurgence and Utility of Small Satellites 

“After some 50 years of launching large, complex, multi-million dollar spacecraft, 

the military and industry are rethinking the way satellites are built and acquired.  The 

need for systems that don‟t take a decade to develop and deliver or can be quickly 

replaced is driving the trend toward smaller spacecraft” [3].  Replacing a satellite quickly 

with a smaller one requires reducing the scale of the current capabilities or mapping these 

capabilities to a smaller low SWaP sensor, if one exists.  “Large satellites offer exquisite 

instruments and they work fabulously in orbit for a long time, but that‟s not necessarily 

the only way that spacecraft acquisitions can be done” [3]. 

A smallsat may be defined by different characteristics such as size, weight, 

power, and cost are the most common.  These characteristics are proportional and any 

one can drive the other characteristics or find itself constrained by another.  For example, 

a payload, e.g. instrument suite, that requires a large power supply would have an impact 

on the physical dimension due to the size of the power supply and required solar panels.  

Thus all attributes must be noted when considering desired capabilities and making 

decisions.  The relationship among these attributes would allow parts of the satellite to be 

standardized; however, “manufacturers have a propensity to build a unique satellite for 

each specific application.  The user community should encourage the development of 

standard interfaces and modular plug-and-play configurations.  An effective approach to 
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minimizing the nonrecurring costs associated with new satellite developments is to 

emphasize distributed satellite constellations and production assembly lines. [9]”  This 

thesis will focus on researching the utility of the CubeSat based on what was learned 

from various studies. 

The capability and utility of smallsats have been scrutinized and while some agree 

that larger systems will never go away, they remain doubtful critics of the utility of small 

satellites.  Nonetheless, smallsats are growing in popularity.    While there have been 

studies completed to identify the problem areas plaguing spacecraft acquisitions, the 

utility and potential mission areas of small satellites required an analysis.  Small satellites 

are not well suited for all missions.  “Space missions can be characterized by their 

position in a three dimensional space defined by how much of the globe they must cover 

(ACCESS), how often they must view a particular spot on the earth (PERSISTENCE), 

and how well they must view that spot (QUALITY).  Smallsats, because they offer the 

potential for trading persistence (by increasing constellation size) with sensor quality, 

naturally address different parts of this space for a given system cost. [11]”  The terms 

above that characterize satellite missions, apply to large and small spacecraft, even as 

small as the CubeSat.  In fact, when considering a small satellite, a concept termed “good 

enough” helps determine the satellite‟s operational utility [11].  To illustrate an example 

of good enough, recall the move from listening to music on compact discs (CD) to an 

mp3 player.  When the mp3 was first introduced, the quality of the music was not as good 

as the original CD.  A tradeoff between music quality and file size was required.  Higher 

quality music led to a larger file size which consumed more storage.  As the consumer 

market proves, the quality was “good enough” for the consumer to buy not only the 
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product but into the technology.  “Finding the portions of access, persistence, and quality 

where smallsats can provide „good enough‟ capability to satisfy realistic user needs while 

meeting cost constraints that result in an attractive cost-benefit is critical for establishing 

utility for smallsat systems. [11]”  The trade between access, persistence, and quality in 

regards to image quality provides another example of what is good enough.  

“Combat commanders now have access to airborne electro-optical (EO) 

surveillance (orange bubble) that offers high resolution, great persistence, but 

very poor access.  This leaves a lot of white space where smallsats (blue bubble) 

may provide capability because their cost allows persistence to be gained through 

numbers.  The issue becomes whether or not they can deliver enough quality and 

persistence for a total system cost that provides good value in meeting user needs.  

A one meter resolution image capability of near term EO imaging satellites was 

“good enough” for many DoD users while a 2.5 meter resolution was deemed 

below the minimum capability limit.  This is a good example of “good enough” 

trades because even though you could achieve substantially better persistence by 

buying twice as many 2.5 imagers, the utility remains low because of the image 

quality. [11]   

 

The interest in smallsats is growing beyond the space community and is now 

getting the attention of ground combat commanders.   

This is often manifested in the notion of field commanders directly controlling 

“their” satellite.  It is believed that while the warfighter-space interface does need 

development, ownership should be defined through unambiguous tasking 

authority conveyed to centralized, specially trained satellite operators who can 

implement them.  To do otherwise will require substantial infield overhead, 

duplicating specialized functions such as safe satellite operations, specialized 

processing, etc., and requiring substantial expansion of our ground infrastructure. 

[11] 

   

While the study recommends field commanders or individual soldiers should not 

directly task satellites, the Army is pursuing this capability in a project called Kestral Eye 

which will be discussed in the section that follows.  “Dialog is required among users, 

developers, and acquirers to establish the „good enough‟ that allows balance of 
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requirements, capabilities, and system cost. [11]”  The mission areas identified by the Air 

Force Scientific Board as having near term operational utility are listed in Table 1. 

Table 1.  Small Satellite Mission Areas [11] 

MISSION NEAR TERM 

SMALLSAT POTENTIAL 

Science & Technology Immediate Opportunity 

Space Weather Immediate Opportunity 

Weather Mixed Architecture 

Comm – Narrowband Use Commercial Assets 

Missile Defense Possible Augmentation 

Comm – Wideband Little Potential 

 

The board made several recommendations for Air Force Space Command 

(AFSPC) but the one that is most relevant to the research in this thesis is the 

establishment of a comprehensive capability that generates good enough requirements 

[11].  If the CubeSat is to perform an operational mission then it must start by identifying 

a specific mission, what capabilities (i.e. instruments and sensors) currently exist to 

provide support, and a definition of what is good enough.  Establishing these parameters 

could also identify sensors that would benefit from additional testing or don‟t exist at all 

but are needed.  To utilize CubeSats, the sensor must be within certain dimensions or, if 

possible, separated and integrated on multiple CubeSats and flown in formation.  The 

space weather monitoring mission is one that has several experiments introducing or 

maturing many sensors compatible with the CubeSat bus.  “The smallsat approach is 

particularly timely and critical as there is a looming crisis in the U.S. space weather 
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capabilities because the Space Environmental Sensor Suite is no longer manifested on 

NPOESS.  To meet AF requirements beyond the DMSP era, a smallsat constellation 

could be efficiently carried out independent of other missions and systems” [11].  Space 

weather phenomena and its impact on space systems will be discussed later.  The next 

step is to discuss the current research and experimentation by academia, industry, and the 

Department of Defense. 

2.3  Advanced Concepts and Experimentation with Small Satellites 

The increased attention toward small satellites has led to several experiments 

aimed at advancing the smallsat subsystems and small payload sensors in several mission 

areas.   

“The Dynamic Ionosphere Cubesat Experiment (DICE) consists of two identical 

Cubesats with three scientific objectives: Investigate the physical processes responsible 

for the formation of the midlatitude ionospheric Storm Enhanced Density (SED) bulge in 

the noon to post-noon sector during magnetic storms; investigate the physical processes 

responsible for the formation of the SED plume at the base of the SED bulge and the 

transport of the high density SED plume across the magnetic pole; investigate the 

relationship between penetration electric fields and the formation and evolution of SED. 

[10]”  DICE is one of many smallsat missions with a scientific motive.  It demonstrates 

the ability to obtain space weather information from sensors onboard a CubeSat.  “The 

mission will provide simultaneous key electric field and electron density measurements 

in the early afternoon sector where many of these events seem to form. [10]”  DICE also 

shows how a CubeSat can complement another spacecraft‟s mission, in this case DMSP.  

“Currently, a lack of afternoon sector electric field measurements exist because the sun-
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synchronous DMSP orbits are at local times that are not able to make SED coincident 

measurements.  DICE will provide dayside electric field measurements across a broad 

swath of local times. [10]”  The DICE constellation will employ two instruments: the 

Electric Field Probe (EFP) for electric field measurements and the fixed-bias DC 

Langmuir Probe (DCP) for absolute ion density measurements.  These instruments draw 

on more than 20 years of sounding rocket and orbital flight heritage at Utah State 

University (USU) Space Dynamics Laboratory (SDL) [10]”  DICE will experiment with 

measuring atmospheric conditions (electric field, ion density) impacted by space weather 

phenomena using instruments with a long history and demonstrate the technology on a 

CubeSat.  The EFP itself is an experiment by USU students attempting to develop a 

Miniature Wire Boom System that fits into a standard CubeSat bus and not only takes 

electric field measurements but contributes to the stability of the spacecraft [11].  The 

Boom System nearly combines (or maps) two capabilities into one, i.e. a contributing 

stability capability for the spacecraft subsystem and electric field measuring capability  

Table 2.  DICE Science to Mission Functionality Requirements [10] 

MEASUREMENT  

REQUIREMENTS 

INSTRUMENT 

 REQUIREMENTS 

Measure RMS Fluctuations in Electric Field 
and Plasma Density: 

1. Make co-located DC electric field and 

plasma density measurements at a ≤ 10 
km on-orbit resolution. 

2. Make AC electric field measurements 

at a ≤ 10 km on-orbit resolution. 

3. Make measurements on a constellation 
platform of ≥ 2 spacecraft that are 

within 300 km. 

Electric Field: 
1. Max range of ± 0.6 V/m 

2. Min threshold of 0.6 mV/m 

3. Min resolution of 0.15 mV/m 
4. DC sample rate ≥ 4 Hz 

5. AC sample rate ≥ 4 kHz 

Plasma Density: 

1. Range of 2x10
9
 – 2x10

13
 m

-3
 

2. Min resolution of 3x10
8
 m

-3
 

3. Sample rate ≥ 1 Hz 
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for the sensor payload.  “DICE is expected to launch no sooner than 2011. [10]”  There is 

no documentation that suggests any attempt or intention to advance the DICE experiment 

to an operational space weather mission.   

 “DICE will use the PEARL platform developed by SDL to provide all of the 

necessary scientific, power, data processing, communications, and attitude control 

resources.  The PEARL mission is a 1.5 CubeSat program that heavily relies on flight-

proven CubeSat community components from various manufacturers, e.g. Pumpkin Inc., 

Honeywell, Clyde Space Ltd., etc. [10]”  The PEARL mission/program has additional 

objectives, building the CubeSat bus toward an operation mission (Figure 1).  PEARL 

recognizes the mindset that is different for operational missions than for scient ific 

missions (Figure 2) [12].  PEARL seeks higher satellite subsystems capability by taking a 

different approach that includes requirements-based design [12].  If the existing 

capabilities of the satellite subsystems are the targeted area of improvement, then those 

capabilities should have existing requirements.  Thus, researching and obtaining the 

requirements that led to the development of the original capability of interest will allow 

the focus to be on understanding what the capability provides and how it functions.  It is 

the ability to better perform the task (e.g. attitude control) intended for CubeSat that 

should be focal point, i.e. an improved and reduced capabilities-based design or process 

of mapping the ability to the CubeSat.  

Electro-optical solutions utilizing smallsats was discussed above and is an area 

that is being explored by academia and the Department of Defense.  “The Kestral Eye 

program will extend the Unmanned Aerial Vehicle (UAV) paradigm into space: a 

dramatically lower unit cost and proliferated numbers of satellites enabling the system to  
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Figure 1.  PEARL Mindset [12] 

Figure 2.  PEARL Mission Needs [12] 



 

 20 

be dedicated to and operated by Warfighters.  The eventual goal is persistent coverage 

available to every Soldier on a handheld device. The CONOPs for this experiment 

involves very small satellites, laptops, and S-Band receiver antennae (Figure 3). [13]” 

Table 3.  Kestral Eye Summary [13] 

 Nanosatellite technology demonstrator  

weighing about 10 kg 

 Operational life of greater than one year 

in Low Earth Orbit 

 Electro-optical imaging satellite with 1.5 

meter ground resolution 

 Tactically responsive: Ability to task and 

receive data from the satellite during the 

same pass overhead 

 $1M per spacecraft in production mode  

DARPA has introduced a concept called “fractionated satellites.”  Known as the 

F6 (Future, Fast, Flexible, Fractionated, Free-Flying Spacecraft United by Information 

Exchange) program, “Fractionation is used as a term of art to describe the decomposition 

Figure 3.  Kestral Eye CONOPS [13] 
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of a system, here a spacecraft, into modules which interact wirelessly to deliver the 

capability of the original monolithic system.  Fractionated architectures offer the post-

design option of substituting a module, augmenting the system with an additional 

module, removing a module from the system, or porting a module from one system to 

another. [8]”  Whether the module contained a subsystem capability or payload sensor 

capability, this system offers flexibility to spacecraft developers.  If a new capability was 

needed or became available it could easily be added to the system or phased into a larger 

architecture.  “One program goal of the F6 program is to develop an F6 Developers Kit 

that provides open interface standards and reference displays” [15].  This flexibility aids 

the process of mapping a capability and its individual functions to one or more modules.  

The open interface standards and reference displays save development time allowing the 

focus to remain on mapping and scaling the capability of interest.  “Thus the key 

distinction between a fractionated and monolithic system is that the former retains 

elements of design flexibility throughout the operational lifetime of the system.  This 

flexibility, in turn, provides robustness to the various uncertainties the system may 

encounter. [8]”  Boeing completed an exercise in fractionation, they called segmentation, 

of a communications satellite.  They found that spacecraft subsystems are physically 

interacting and inter-dependent for both monolithic and fractionated [16].  The exercise 

took existing subsystem components and segmented them into “appropriately-sized 

fractionated blocks”.  The segmentation only separated the physical components which 

limits the reduction because of the actual size of individual components.  The exercise 

would be better served if the function of each system was separated.  This would reveal 

that the CubeSat addresses various subsystem components as illustrated by PEARL 
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above which would allow more attention to be given to the payload.  Then each function 

could be mapped to a low SWaP sensor compatible with the CubeSat.  If one did not exist 

then the design requirements could be determined by the original function requirements 

which come from the system requirements. 

2.4  Emerging Standardized Equipment 

There is a spacecraft bus that has emerged as a standard.  “The CubeSat is a 

standardized miniature satellite measuring 10 x 10 x 10 cm, weighing up to 1 kg and was 

developed primarily for use as an education tool.  The general concept for such a satellite 

arose in 1998 as a result of work by students at Stanford University‟s Space Systems 

Development Laboratory” [17].  The standardized dimensions were not established at 

first.  “Following the success of an Aerospace mission called Orbiting Picosatellite 

Automated Launcher (OPAL), a member of the faculty realized changes were necessary 

in order to make the student program successful.  First, development time had to be 

shortened and second launch cost would have to be reduced” [17].  The reduced 

development time allows the capabilities to be integrated more quickly and get the 

satellite to orbit sooner which benefits the users.  To reduce the launch cost, the faculty 

pursued a restriction on a characteristic of the process and equipment not so intuitive.  “If 

the size of the satellite was reduced, that would limit the number of experiments that 

students could fly” [17].  This limitation of experiments is analogous to “locking” the 

requirements of a traditional space acquisition program.  Allowing fewer requirements 

equates to fewer capabilities or separated capabilities.  “The question that followed the 

idea of limiting experiments became, „How much could you reduce the size and still have 

a practical satellite?‟” [17].  While the decision was made to have a 10 x 10 x 10 cm 
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cube, the question could be expanded to include more than an experiment and practical 

satellite, i.e. “How much could you reduce the size and still perform an operational 

mission?”  Table 1 lists some of the unique positive and negative characteristics of the 

CubeSat.  The CubeSat dimensions mentioned above have been accepted and now allow 

a payload that can be expanded by combining additional units, e.g. 2U refers to a 

CubeSat that measures 10 x 10 x 20 cm and 3U measures 10 x 10 x 30 cm. The 

standardized bus, with an initial weight of 1 kg. will save development time by 

eliminating the development required for a spacecraft bus.  In addition, the CubeSat 

could be utilized as a quick response to capability needs or gaps and to fullfil the request 

for a specific capability. The capability mapping process will assist by isolating the 

specific functions of the capability and mapping them to the functions of a low SWaP 

equivalent. These advantages make the CubeSat a viable platform for rapidly delivering a 

satellite or constellation that will perform a needed or requested capability.  As discussed 

later, the CubeSat could serve as a platform for space weather sensors that could be flown 

in a constellation and fill the NPOESS SESS gaps.  “At the heart of any conventional 

satellite design is the satellite bus, which provides mechanical support for the payload 

and interfaces to all power, command/data handling, communications, and computing 

functionalities, as well as propulsion subsystems for orbit maneuvering capability and 

attitude/pointing control.  Many factors enter into the cost/performance ratio and cycle 

time required to build a spacecraft, but making a good decision regarding the spacecraft 

bus is vital. [11]”  The CubeSat has made those decisions already.  The next step is to 

find or develop low SWaP sensors compatible with the CubeSat bus.  Low SWaP sensors 

offer alternatives that reduce costs and shorten development time; however, it is the low 
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cost of launching several that offers an even bigger benefit which is global coverage.  

This means providing the capability to more geographic areas and hence customers at a 

fraction of the cost of large spacecraft.  There is an increasing demand for capabilities in 

specific theaters by commanders as mentioned above with the Army‟s Kestral Eye 

program.  The CubeSat solves the problem of a standardized bus but there is still the 

dilemma of getting, i.e. mapping, the capabilities from the large spacecraft to the 

CubeSat.   

2.5  Space Weather Forecasting and Monitoring 

Space is a hostile environment.  The phenomena resulting from solar emissions 

can negatively impact the operation of any space system.  However, the space 

environment is better understood today than ever before, but the sun‟s activity is 

continuous and always producing phenomena that will put the operational mission of any 

Table 4.  Positive and Negative Issues Related to the CubeSat Size [7] 

Positive Negative 

 The frame is of a simple shape and 

construction 

 Limited area for solar cells reduces 

manufacturing costs since the solar 

panels are the most expensive 

components for a small satellite 

 Low weight which allows it to be 

combined with other CubeSats in a 

single launch helping to defray costs 

 Take advantage of new technologies 

for consumer electronics such as cell 

phones and other portable devices 

 Size can be increased by combining 

two or three units end to end and are 

defined as 1U, 2U, 3U 

 Limited capability because no proven 

attitude control systems are available 

 Surface area for body-mounted solar 

panels is limited 

 Subsystem requirements limit payload 

volume 
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space system at risk.  This makes space weather monitoring and forecasting a critical 

mission in regards to space assets.  Without the ability to monitor and forecast space 

weather phenomena, our satellites would become vulnerable which ultimately puts our 

national security at risk.  The discussion that follows provides a discussion of space 

weather phenomena and impacts, space weather monitoring and forecasting user needs, 

capability gaps resulting from the dis-mantled NPOESS program, and the potential 

solutions offered by small satellites. 

“The primary force in our corner of the universe is our sun.  The sun is constantly 

radiating enormous amounts of energy across the entire electromagnetic spectrum 

containing x-rays, ultraviolet, visible light, infrared, and radio waves.  The sun also 

radiates a steady stream of charged particles – primarily protons, electrons, and neutrons 

– known as the solar wind. [18]”  When the energy and charged particles impact the 

Earth‟s atmosphere they interact with spacecraft.  The effect of these interactions can 

negatively impede the operation of the spacecraft.  “Space weather effects have the most 

impact on communications, Position, Navigation, and Timing (PNT), and Intelligence, 

Surveillance, and Reconnaissance (ISR). [4]”  For example, solar energetic particles 

accelerated by a coronal mass ejection (CME) or solar flare can damage electronics 

onboard spacecraft through induced electric currents, as well as threaten the life of 

astronauts.  Also, changing geomagnetic conditions can induce changes in atmospheric 

density causing rapid degradation of spacecraft altitude in Low Earth orbit.  The space 

weather effects will always present a threat to the operational mission of those systems.  

The forces that protect our country‟s national security and interests rely on those systems.  

Therefore, it is important to emphasize that information on the space environment is of 
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paramount interest to the war fighter [18].  The impacts resulting from the three main 

categories of solar emissions are summarized in Table 5. 

Table 5.  Solar Radiation Particle Types and Effects [18] 

SOLAR EMISSIONS PHENOMENA SYSTEM IMPACT 

Electromagnetic Radiation 

 

 Arrival:  immediately 

 Duration:  1-2 hours 

 X-Rays 

 EUV 

 Radio Bursts 

 Satellite communication 

interference 

 Radar interference 

 Long-range aid to navigation 

(LORAN) errors 

 Absorption of HF radio 

communications 

High Energy Particles 

 

 Arrival:  15 minutes to a 

few hours 

 Duration:  days  

 

 Proton Events  Satellite disorientation 

 Physical damage 

 LORAN errors 

 False sensor readings 

 Absorption of HF radio signals 

Low- to Medium-Energy 

Particles 
 

 Arrival:  2-4 days 

 Duration:  days  

 

 Geomagnetic Storms  Spacecraft electrical charging 

 Drag on low-orbiting satellites 

 Radar interference 

 Space tracking errors 

 Radio wave propogation 

anomolies 

 

Since space weather can produce negative effects on spacecraft, there is clearly a 

need to understand, monitor, and forecast space weather.  The military, commercial, and 

civil sectors have spacecraft performing missions ranging from data collection supporting 

the national security of the United States to providing GPS directions to millions of 

travelers across the country.  In June 1999 the “Space Weather Architecture Study” was 

completed to evaluate the ability of the projected baseline support system to mitigate 

space weather impacts [4].  The study identified and assessed the operational impacts that 

would be caused by space weather effects.  Today the report still serves as a starting point 
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when developing a space architecture that directly studies space weather or uses the data 

collected to provide support to other space systems. 

  The significance of these impacts is best illustrated by our reliance on space 

systems.  The role of satellite operations has expanded to include an active role in 

addition to a support role [4].  For example, “In the future, terrestrial weapons will be 

directly targeted using space” [4].  The Space Weather Architecture Study stated “future 

National Security operations will require improved capability to accurately locate targets, 

provide precision navigation, and provide reliable mobile communications in a more 

time-constrained environment” [4].  Today, over ten years later, our dependence on space 

systems remains at a critical level providing evidence that it is equally critical to not only 

monitor and forecast space weather but also to better design satellites to resist these 

impacts. 

As space systems age or near the end of their tenure, gaps are created if a 

replacement system is not launched to take its place of the old system.  The needs and 

gaps serve as guidance to the studies that determine what direction stakeholders should 

take when preparing to procure a replacement system that will span several years, 

possibly a decade.  As discussed in the introduction, NPOESS (Figure 4) was intended to 

be the next generation space weather monitoring system but was dis-mantled due to 

significant budget and performance problems.     
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 The importance of space weather monitoring, problems resulting from the 

NPOESS program, and the acquisition of spacecraft have been studied and identify 

mission areas for small satellites and the urgent need for a strategy that maintains 

continuity of space weather monitoring.  A review of these studies will reveal a path to be 

taken in order to provide a viable and operational small satellite solution.  An 

understanding of the magnitude of the NPOESS problem and the mitigation being taken 

to provide a solution will reveal potential smallsat, i.e. CubeSat, missions. 

2.6  Space Weather Dilemma and Potential Mitigation 

“The United States currently operates two operational polar-orbiting 

meteorological satellite systems: the Polar Operational Environmental Satellite (POES) 

series, which is managed by NOAA, and the Defense Meteorological Satellite Program 

(DMSP), which is managed by the Air Force.  The POES and DMSP programs provide 

Figure 4.  Organizations Coordinated by the NPOESS Integrated Program Office [20] 
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data that are processed to provide graphical weather images and specialized weather 

products.  They also provide the predominant input into numerical weather prediction 

models, a primary tool for forecasting weather” [19]. The NPOESS was a tri-agency 

program intended to develop and operate the next generation of weather satellites.    “At 

the time the offices merged, they continued with plans to launch additional Polar-orbiting 

Operational Environmental Satellite (POES) and Defense Meteorological Satellite 

Program (DMSP) satellites” [20].   

Program acquisition plans called for the procurement and launch of six NPOESS 

satellites over the life of the program.  The NPOESS launch schedule was driven by the 

requirement of using the first NPOESS satellite to back up the final POES satellite launch 

in March of 2008 and the second NPOESS satellite to back up the final DMSP satellite in 

October of 2009 (Figure 5).  The first NPOESS satellite scheduled for launch in May of 

2006 was actually a demonstration satellite that would have hosted three critical NPOESS 

Figure 5.  Timeline of Delay in Launch Availability [20] 
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sensors [20].  The satellites would integrate ten environmental sensors.  “Seven of those 

sensors involved new technology and the program office considered four to be critical. 

[20]” However, as of August 2008 the demonstration satellite, referred to as the NPOESS 

Preparatory Project (NPP), had not launched and is currently scheduled to launch in the 

third quarter of 2010 (NPOESS Program Status, August 2008). 

“In August 2005, the NPOESS program office determined that it could not 

execute its planned program within the constraints of its current baseline.  In November 

of 2005, it was determined that at completion the final program cost would be 25% 

greater than its baseline” [20].  This breach required the program to be certified under the 

Nunn-McCurdy Act.  In December of 2006, a joint document released by NASA and 

NOAA outlined the impact of the certification; however, the NPOESS program would 

have to be de-scoped if it was to survive.  Unfortunately, on 1 February 2010, the 

president‟s FY2011 budget announced a major restructuring of the NPOESS program.  

The program was reported as being “behind schedule, over budget, and underperforming” 

[2].  

The concerns resulting from the Nunn-McCurdy Certification are clear and valid.  

The Space Weather Architecture Study recommended three space weather architectures 

to satisfy all the 2010-2025 user needs.  Unfortunately, not even the “Desired 

Architecture” (Figure 6) alternative will satisfy all the user needs.  This combined with 

the dismantled NPOESS program prove there will be gaps in the 2010-2025 period.  

Thus, the need for an interim, possibly even long-term, solution is needed. 

The Space Environmental Sensing Suite (SESS) raised concerns when it was 

removed from NPOESS in 2005.  “The SESS consists of sets of sensors that provide data 
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on electron density profiles, neutral density, geomagnetic field, precipitating electrons 

and ions, electric field/ion drift velocity, radiation dose, neutral atmosphere, galactic 

cosmic rays, trapped particles, ionospheric scintillation, auroral emissions, in-situ plasma 

measurements and other selected space environmental parameters. [21]”  The SESS 

supported 13 environmental data records (EDR).  “EDRs range from atmospheric 

products detailing cloud coverage, temperature, humidity, and ozone distribution; to land 

surface products showing snow cover, vegetation, and land use; to ocean products 

depicting sea surface temperatures, sea ice, and wave height; to characterizations of the 

Figure 6.  Space Weather Architecture Vector with Progressive Capability [4] 

 

Desired Architecture
•Maximizes performance

•Adds accuracy and confidence to long-term
solar wind and CME  forecasts

Target Architecture
•High performance

•Adds accuracy and confidence to short-term
and CME  forecasts

Minimal Architecture
•Focuses on specification of the ionosphere

and radiation
•Forecast of solar events and ionospheric

scintillation

Current Baseline
•Some incremental capability improvements compensate for known deficiencies

•Some new data sources/types that may improve warning times
•Some new data sources may improve our understanding of space weather phenomena

•No breakthrough advances likely in space weather predictions

Space
Weather

Architecture
Vector
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space environment.  Combinations of these data records (raw, sensor, temperature, and 

environmental data records) are also used to derive more sophisticated products, 

including outputs from numerical weather models and assessments of climate trends 

(Figure 7). [22]” 

 

Figure 7.   Satellite Data Processing Steps [22] 

Figure 8 below lists the EDRs produced from data obtained from sensors in the 

SESS.  “It shows current capability, Pre-Nunn McCurdy (NM) NPOESS, and Post-NM 

NPOESS space environmental sensing performance and capability (Figures 9-10).  As 

shown, only one of the thirteen EDRs will be satisfied Post-NM, four will be degraded, 

Figure 8.  NPOESS Space Environmental Requirements Satisfaction [23] 
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and five will no longer exist” [5].   

Returning to the earlier discussion of the impacts of space weather, the 

capabilities now absent are listed in the table below. 

Figure 10.  Traceability of Post-Nunn McCurdy NPOESS SESS to space EDRs [5] 

Figure 9.  Traceability of Pre-Nunn McCurdy NPOESS SESS to space EDRs [5] 
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The SESS contained five instruments: Low Energy Particle Sensor (LEPS), 

Medium Energy Particle Sensor (MEPS), High Energy Particle Sensor (HEPS), Thermal 

Plasma Sensor (TPS), and Airglow & Aurora Ultraviolet Remote-sensing Observations 

for Real-time Applications (AURORA).  Each sensor is briefly described in Table 6.   

Table 6.  SESS Sensor Descriptions [5] 

SENSOR DESCRIPTION 

Low Energy Particle Sensor 
(LEPS) 

The LEPS will measure mostly auroral and supra-thermal 
particles precipitating into the upper atmosphere at mid-to-

high magnetic latitudes.  The LEPS was the primary sensor 

for measuring the equatorial Auroral Boundary and the 
Auroral Energy Deposition EDRs. 

Medium Energy Particle 

Sensor (MEPS) 

The MEPS measures the differential energy fluxes of 

electron and protons at 0 degrees and 90 degrees relative to 

the local vertical.  It is the primary sensor for measuring the 
Medium Energy Charged Particle EDR and supporting 

sensor for measuring the Auroral Boundary and Auroral 

Energy Deposition EDRs, as well a contributing to the 
Electron Density Profile EDR. 

High Energy Particle Sensor 

(HEPS) 

The HEPS measures the precipitating flux of high energy 

ions into the atmosphere.  It is the primary sensor for 

providing the Energetic Ions EDR. 

Thermal Plasma Sensor 

(TPS) 

The TPS is actually a set of plasma collectors used to 

measure and characterize the densities, temperatures, and 

drifts of the thermal ionospheric plasma at satellite altitude.  
The TPS satisfies the Electric Field, In-situ Plasma 

Temperature and In-situ Plasma Fluctuations EDRs.  TPS 

also contributes to the Electron Density Profile EDR. 

Airglow & Aurora Ultraviolet 
Remote-sensing Observations 

for Real-time Applications 

(AURORA) 

The AURORA sensor provides remotely-sensed data from 
the ionosphere and thermosphere by observing Far Ultra 

Violet (UV) emissions from atmospheric constituents.  The 

primary data products for the AURORA are the Electron 
Density Profile, Neutral Densiy Profile, and the Auroral 

Imagery EDRs. 

 

The impact resulting from the de-manifested sensors has prompted several 

recommendations to mitigate the loss of space environmental sensors [11].  The 

responsible committee developed an incremental approach made up of four increments, 

figure x, from bare baseline capability to the full architecture. 
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As shown in Figure 11, the original capability will not be fully restored until 

2017.  In addition, there are no new technologies introduced, i.e. those being 

experimented with that were discussed above.  “When the NPOESS program breached 

cost and schedule thresholds in 2006, it was restructured and most of the space 

environmental sensing capability was removed to reduce cost.  Without action to restore 

this capability, the nations space environmental sensing capability will fall to pre-1980 

levels in approximately 2020 when the last DMSP spacecraft reaches end of life. [11]”  

Mitigation efforts have begun, but they do not utilize any of the space weather sensors or 

methods being developed as discussed in the sections above. 

If the SWx sensor be used in the experiments by academia, government labs, and 

industry were to be utilized with the CubeSat bus then maybe a quick, good enough 

solution could be obtained at a low cost.  The experiments that employ the low SWaP 

Figure 11.  Summary of Performance, Risk, Schedule, and Cost by 

Increment. [23] 
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sensors have been producing impressive results and the CubeSat bus is becoming a bus of 

choice due to its cost and short development cycle.  The success would recommend the 

two be exploited by the larger program offices and corporations.  The two could be joined 

if a method were to demonstrate the successful mapping of the large-scale capabilities to 

the experimental low SWaP sensors. 

2.7  The Trend of Advanced Capabilities in Smaller Packages 

Consumers continue to enjoy products that provide numerous capabilities that are 

smaller, lighter, consume less power, and typically offer an increase in performance than 

the predecessor.  The computers used everyday by most Americans is the best example.  

All of these are true of satellites with the exception of cost and schedule.  The 

commercial market will always exceed satellites in regards to cost and schedule 

performance; however, “science and technology developments in the various bus 

subsystems (power, structures, attitude control, propulsion, command and data handling, 

thermal, and communications) and payloads (e.g. telescopes, radio-frequency [RF] 

electronics, laser communications) have enabled a significant increase in space systems 

capabilities.  Six satellite technologies or subsystems have been analyzed, over the last 10 

to 25 years, to examine the relative trends of those technologies. [9]”  The reduction in 

size, weight, and power along with the advancements in nanotechnology and 

miniaturized components, present small satellites, i.e. CubeSats, with a probable 

operational mission in the near future.   

 “The specific reductions in satellite weight coupled with similar progress in other 

satellite subsystems and components have reduced satellite weight by a factor of about 

two every eight years since 1981.  This shrinking satellite trend is not evident because the 
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benefit of the weight savings is used to significantly increase capabilities. [9]”  As stated 

earlier, the increase in capabilities in larger spacecraft has negatively impacted cost and 

schedule.  These cost and schedule overruns typically result in the program cutting 

capabilities.  Capabilities should never be eliminated if they are ready to fly.  Instead, 

they should be considered for smaller platforms, hence the interest in smaller satellites 

with fewer capabilities.  A situation such as this needs a method that would map that 

capabaility to a smaller satellite.  CubeSats and low SWaP sensors present a new 

alternative while being beneficiaries of the increase in performance for lower SWaP as in 

Figures 12-15.  Unfortunately, there is no method practiced to map the needed 

capabilities to a small satellite such as a CubeSat. 

Figure 13. Millions of instructions per second capability per unit [9] 

Figure 12.  Average power density in watts per kilogram for spacecraft electrical 

power system. [9] 
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Another example of a “big thing (capability) in a small packages is the Pico 

projector. [24]”  The PicoP ® is a display engine developed by Microvision that is 

intended to fit inside of a handheld device, e.g. smartphone (Figure 16).  “The 

architecture is quite simple, consisting of one red, one green, and one blue laser, each 

with a lens near the laser output that collects the light from the laser and provides a very 

low numerical aperture beam at the output.  The light from the three lasers is then 

combined with dichroic elements into a single white beam.  The complete projector 

engine is 7 mm in height and 5 cc in total volume. [24]”  The Pico projector by 

Microvision illustrates a reduction in a capability other than space weather sensors 

proving that miniaturized components and their applications support opportunities for 

Figure 15.  Percentage of satellite structure mass fraction [9] 

Figure 14. Relative weight of a spacecraft attitude control system for a fixed 

capability [9] 
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smallsats in numerous markets and mission areas.    “The scanned laser projector 

paradigm provides a path forward to higher-resolution projectors without growth in size. 

[24]”   

The last area to be discussed that presents numerous and diverse opportunities for 

smallsats is nanotechnology and miniaturized components.  “In addition to the continuing 

advances in traditional technology areas over the last 25 years, significant improvements 

can be made by integrating nanotechnologies, micro-sensors, and miniaturized 

components.  They are essential to enable our new generation satellites, allowing for 

vastly increased capabilities and smaller and lighter satellites.  The three areas of 

nanotechnology (materials, electronics/computing, sensors/components) provide 

powerful (in the petaflops range), compact, low-power, radiation hardened onboard 

computers, allowing for autonomous intelligent vehicles. [20]”  Nanotechnology may be 

the next phase in the evolution of smallsat payloads, i.e. taking the experiments discussed 

above (DICE, Fractionated spacecraft, etc.) to an even more advanced level not only 

making them smaller but more capable.  The functions of the capabilities that result from 

nanotechnology introduce possible solutions to any market that desires a reduction in the 

Figure 16. Scanned laser: A simple projector design [24] 
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SWaP of their product.  The interest in small satellites would benefit from a method that 

identifies subsystem or payload functions in order to determine if some type of 

nanotechnology could produce an alternative with low SWaP.  The Pico projector 

demonstrates an achievement toward reducing the SWaP of one specific capability.  If the 

space industry embraced the same innovative thinking then it too could see a reduction in 

the SWaP of spacecraft capabilities.  It begins by knowing what functions are needed in a 

smaller package.  Once identified, these functions can be created by nanotechnology or 

mapped to an existing device that possesses low SWaP. 

2.8  Summary 

There are several experiments with spacecraft subsystems and payloads that are 

reducing the SWaP while delivering more performance.    With this, advanced materials 

and microelectronics have allowed the reduction of the SWaP of the spacecraft bus and 

its components.  The CubeSat presents the spacecraft developers with a standardized bus 

for testing these low SWaP subsystems and payloads for a low cost.  If all of these efforts 

were synergized to support a process that employs them in an operation scenario, then 

more benefits could be gained.  That is, take these experiments to the next phase in the 

evolution of smallsats and their components, an operational mission.  Considering the 

budget and schedule challenges the space acquisition is currently experiencing, these 

advancements present the space community (commercial and government) with 

alternatives to the old way of doing business.   

There is no traceability back to the original capability, i.e. spacecraft bus, 

subsystem, or payload.  There are advocates for smaller and simpler spacecraft [11].  

Advocates for small satellites have no process to connect the advanced technology to the 
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capabilities that exist on large satellites.  This process is needed if the small satellites are 

to move experimental missions to an operational mission.  The next section will discuss a 

process that studies the capabilities of large satellites and maps selected capabilities to the 

low SWaP sensors being advanced through experimentation.  The process is called 

satellite capabilities mapping.     
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3.  Methodology 

3.1  Overview 

The utility of small satellites is maturing and provides usefulness in some mission 

areas.  Space weather is the most popular application at this time.  The smallsat utility is 

increasing because of the interest from several members of the space community and the 

large number of active experiments.  These experiments are evolving the CubeSat bus 

subsystems and payloads.  As the experiments continue to advance the capability of the 

subsystems for the standardized CubeSat bus, developers will eventually have a 

marketplace of standard subsystem components.  This will assist in shortening the 

development cycle of the CubeSat bus for specific missions.  The CubeSat payloads will 

follow this trend but never completely loose the unique and specialized aspects 

introduced by any specific mission.  Nonetheless, both will benefit from the evolution 

being led by these experiments. 

As capabilities are reduced in size, weight, and power for the CubeSat bus, the 

original motivation for evolving a specific capability is not being captured, documented, 

nor utilized.   The experiments above are only that, experiments.  None of the researched 

experiments discuss any intent to move to an operational mission, even if only as a 

supplement to another system.  There are capabilities lost, e.g. those illustrated by the 

SESS, during spacecraft acquisitions due to budget cuts, schedules overruns, or for many 

other reasons with no method to replicate or obtain those capabilities on another platform.  

When capabilities are lost, the solution is to use legacy sensors, equipment, or satellites 

[11].  The cost and time (schedule) involved in pursuing this approach or method 

sometimes gets the original program back on schedule but with old technology and 
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typically fewer capabilities [1].   The NPOESS solution is to employ the Space 

Environmental Monitor (SEM-N) which only provides data for five of the original 

thirteen EDRs and only one of the five fully meets requirements [5].  In the end, there are 

eight capabilities not delivered.  If those eight capabilities were needed, the developers 

would continue to employ the same mindset, i.e. large sensor, medium to large satellite, 

and several years of development.   

The space community, especially developers, would benefit from having a tool 

that assists with developing small solutions to lost (large-scale) capabilities.  The tool or 

process would aim to keep the newer technology or capability moving forward.  The 

(mapping) process would serve as this tool by mapping lost capabilities to low SWaP 

sensors that could be integrated onto a CubeSat.  Square pegs do not fit into round holes; 

however, if the square peg can be separated into pieces, then each individual piece can be 

moved through the hole one at a time.  Similarly, if the square peg capability can be 

performed by a group of smaller pieces, then replace the peg and perform the mission 

with the smaller group.  In the real world, this would be attempting to integrate large-

scale, large satellite capabilities to a CubeSat.  The challenge is determining if those 

capabilities can be separated into their basic components or if they can be mapped to a 

low SWaP sensor, even if experimental, to fly on its very own small satellite or CubeSat.  

The process introduced below will perform the task of mapping capabilities from large 

satellites to smaller ones like CubeSats.  Currently, no such process exists.  Typically, as 

evident in the NPOESS dilemma, when a large-scale capability is lost the developers rush 

to utilize existing, or old, instruments without examining the advancements of smallsat 
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experiments.  As will be seen in the space weather mission area, there are small (low 

SWaP) sensors that can provide needed capabilities. 

The capabilities mapping process is limited to spacecraft subsystems and 

payloads.  The orbital parameters will be considered outside of the scope of the mapping 

process for two reasons.  First, the original capability will have its own orbital parameters 

established in its requirements.  The mapping process sees no need to change these 

parameters since the stakeholders and developers confirmed them.  The second reason is 

that launch availability, cost, etc. in an area under study by many offices and 

organizations.  The solution presented by the mapping process will either follow the 

original orbital parameters (i.e. exact launch defined) or pursue a shared ride (i.e. accept 

any launch offered). 

3.2  The Semantics and Attributes of Capabilities Mapping 

The term mapping refers to the process of copying or replicating a 

(operational) capability from its original form to a different form.  The goal of the 

capabilities mapping process is to analyze the large-scale satellite capability, decompose 

the capability to its basic function(s), and map those functions to a low SWaP sensor 

compatible with a smaller platform, i.e. the CubeSat.  The term capability can refer to 

that of a satellite subsystem or payload.  “A capability is the ability to achieve a desired 

effect under specified standards and conditions through combinations of ways and means 

to perform a set of tasks. [7]”  The capability achieves its effect by performing specific 

functions, i.e. an intended task, activity, or purpose [25].  There are a few attributes in 

these definitions that assist in understanding and mapping the capability.  The desired 

effect coming from the capability is the output that is expected by the user.  This 



 

 45 

deliverable may be thought of as raw data, data computed by a software model, a report 

produced by an analyst interpreting the data, or an automated response to an adverse 

event.  Since all three occur after the sensor has performed its function, they will all be 

considered one deliverable.  They process the data whether it comes from the legacy 

sensor or a low SWaP experimental sensor.  The deliverable enables the user to 

accomplish a mission so it is an important attribute of the capability. 

A capability is typically contained within some type of physical hardware that 

contains the components that perform these functions for the capability.  An instrument is 

a device for measuring the present value of a quantity under observation while the sensor 

is the mechanical device that is sensitive to light, temperature, radiation level, or the like, 

that transmits a signal to the measuring or control instrument [26].  Regardless of the size 

of the satellite‟s subsystem or payload, the capability mapping process decomposes the 

components, instruments, and/or sensors to identify and separate their basic functions, i.e. 

the function that performs one task only. Each individual function can then mapped to a 

low SWaP CubeSat compatible sensor that performs the same function(s).   

The system‟s technical requirements document (TRD) contains the original needs 

for the subsystems and payloads.  Among those requirements is a specific requirement for 

the capability of interest.  The specific requirement is the second attribute that should be 

noted, understood, and documented for the process.  It offers a significant advantage to 

capabilities mapping process.  The requirements analysis process is arduous for space 

systems acquisitions.  Therefore, once approved by stakeholders, utilize the requirements 

instead of repeating the painstaking process of developing new requirements for a 

smallsat solution or alternative.  “The steps to write the requirements take too long. 
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Recently, there are more processes being added into acquisition programs.  If it takes us 

years to get through a requirements process that gets you to the beginning of the program, 

something is wrong with the process. [3]”  Don‟t reinvent the wheel because an approved 

set of requirements will have defined thresholds and objectives.  In addition, the ground 

element, mission operations, and the command, control, and communications architecture 

have already planned [21].  Thus, as the capability is mapped, the criteria (metrics) the 

new system must meet has already been established.  One goal of the capabilities 

mapping process is to utilize all the information and technical data developed and agreed 

upon by stakeholders.  This avoids returning to the requirements development phase and 

instead starts at the decomposition and definition phase.  The metrics defined by the 

original requirements (thresholds and objectives) and deliverable will create the measure 

of effectiveness (MOE), measure of performance (MOP), and measure of suitability 

(MOS) for the new system.  Whether this system is a single CubeSat or constellation, the 

MOP and MOS apply numerical data to the analysis which provides the developer, 

stakeholder, and ultimately the user a level of confidence.  If the selected sensors or 

proposed system cannot meet these metrics, they still provide the quantitative data to 

determine a performance level that is good enough.  Utilizing the investment already put 

forth in the development of requirements and mission architecture, standardized 

equipment such as the CubeSat bus, and advanced low SWaP technology resulting from 

numerous experiments, the capabilities mapping process will reduce costs, shorten the 

schedule, and allow developers to focus on the satellite subsystems and/or payload 

sensors. 
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3.3  The Capabilities Mapping Process 

The capabilities mapping process once one or more capabilities of interest are 

identified to be performed on a CubeSat.  The system that contains the capability will 

undergo system and requirements decomposition, both starting at the system level.  While 

the capabilities mapping process can be applied to a subsystem or payload, the focus here 

will be on payload capabilities.  The capability chosen for mapping will be referred to as 

the capability(ies) of interest and can be selected at different levels, e.g. an entire 

payload, an instrument, or a sensor.  Regardless of level selected, the process starts with a 

system and requirements decomposition with the intent to determine the most basic 

function typically found in the sensor and its corresponding requirement (Figure 17).  

Once the individual sensors are identified, three sensor attributes are defined (Table 7) 

Table 7.  Sensor Attributes 

ATTRIBUTE DEFINITION 

Requirement QUESTION: What is the user need for this sensor? 

Requirements are defined by a user need that relates the 

action to be performed by a sensor, instrument, or the like to 

the user‟s expected output.  They are typically measureable, 

testable, and are detailed enough to assist the original design. 

Deliverable QUESTION: What is expected from this sensor? 

A deliverable is a tangible or intangible object produced as a 

result of the capability that is expected by the customer. 

Capability QUESTION: What does the sensor have the ability to do? 

The ability to achieve a desired effect through a combination 

of ways and means to perform a set of tasks. 
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and the system decomposition transitions to a functional decomposition.  The mapping 

process proceeds with the functional decomposition which establishes three attributes for 

the sensor: requirement, deliverable, and capability.  

 

 

Figure 17.  System and Requirements Decomposition 
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The functional decomposition is applied to one or more sensors and defines the 

sensor‟s capability attribute by decomposing all of the independent functions it performs 

(Figure 18).  The sensor‟s capability comes from its ability to perform the functions 

separated by the functional decomposition.  A function is defined as performing one task 

only.  The system and functional decompositions performed in sequence take a complete 

system, identify a specific capability of interest performed by the system, and 

decomposes the relevant components (payload, instrument, and sensor) until the basic 

functions of that capability are identified, isolated, defined, and understood.  As shown in 

Figure 18, sensor 1.3.1.2 performs three functions, 1.3.1.2.1-3.  These three functions will 

be the subject of the capabilities mapping process to seek a low SWaP equivalent.  This 

will be shown after the function‟s metrics are defined which is discussed next. 

The requirements decomposition isolates the specific requirement(s) that will be 

used to define the requirement attribute which shows the sensor (1.3.1.2) to requirement 

(1.3.1.2) relationship (Figure 18).  This begins by examining the system requirements that 

define the spacecraft and its payloads.  The requirements for the payload that provides the 

capability of interest will also define the requirements for all of the instruments and its 

sensors.  The requirement for the sensor isolated by the system decomposition, e.g. 

1.3.1.2 in Figure 18, will provide an explanation of what the sensor must accomplish 

along with quantitative performance specifications such as thresholds and objectives.    

The lowest level requirement definition may only define the instrument which would then 

apply to inclusive sensors.  Next, the deliverable attribute is defined by the intangible (or 

tangible) output expected by the user.  Both will play a role in defining the metrics that 
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will be used to verify, validate, and approve the selected sensor(s) after the mapping 

process.   The sensor‟s requirement and deliverable attributes may be the same for some 

systems; however, if not, they are compared and combined into a set of metrics.   

These metrics (comprised of the original requirements and deliverable(s) data) 

will be contained in a MOE, MOP, and MOS, defined in Table 8.  The MOE will relate 

quantitative factors such as performance, effectiveness, and suitability to the functions 

identified and separated by the functional decomposition of the capability attribute.  This 

applies quantitative performance specifications to the functions of the original capability.  

Figure 18.  Functional Decomposition and Metrics Definition 
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Therefore, the system, functional, and requirements decomposition has identified what 

functions the sensor performs to provide the capability as well as a MOE defining the 

expected performance of those functions.  The MOE will be employed later in the 

process to determine if a low SWaP sensor can meet the original requirements and user 

expectations.  Any low SWaP sensor function that is mapped to the function of the 

original sensor will be analyzed and evaluated according to the MOE.  Thus, if the sensor 

meets these metrics, it meets the expectations of the original sensor, or instrument. 

There are numerous low SWaP sensors are being developed in experimental 

spacecraft; therefore, obtaining a list of compatible and available sensors will require 

extensive research.  For the purposes of the mapping process, all sensors regardless of  

technology readiness level (TRL) will be considered eligible.  Since the bus of choice has 

been determined to be the CubeSat, establishing eligibility criteria for any application is 

simple due to the standardized characteristics of the CubeSat discussed earlier.  This 

illustrates the advantage of the CubeSat bus as well as demonstrates how the 

Table 8.  Metric Definitions [7] 

METRIC DEFINITION 

Measure of Effectiveness 

(MOE) 

A measure designed to correspond to accomplishment of 

mission objectives and achievement of desired results.  
Several MOPs and/or MOS may be related to the 

achievement of a particular MOE. 

 

Measure of Performance 
(MOP) 

Measure of a system‟s performance expressed as speed, 
payload, range, time on station, frequency, or other 

distinctly quantifiable performance features. 

 

Measure of Suitability (MOS) Measure of an item‟s ability to be supported in its intended 
operational environment.  MOS typically relate to readiness 

or operational availability, and hence reliability, 

maintainability, and the item‟s support structure. 
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development cycle is shortened.  Therefore, the entry criteria for low SWaP sensors will 

be defined by CubeSat standards [28].  This criterion would be defined differently if a 

different bus were used or specifically designed.  Once the low SWaP sensors are 

selected for consideration, a functional decomposition will be performed so all their 

functions can be viewed, analyzed, and considered individually.   

With the individual functions listed for both original capability and low SWaP 

capabilities, the next step is to map them to like functions.  This process may produce 

different combinations of sensor to function relationships.  For example, a low SWaP 

sensor may perform more functions than the sensor it maps to and vice versa.  Functions 

may be mapped to other functions directly or indirectly as shown in Table 9.  A simple 

indirect capability mapping example could be a sensor that collects data regarding the 

displacement and time for a moving object.  If the function desired was velocity, it could 

be calculated using the object‟s displacement and change in time.       

If there is no low SWaP sensor that possesses a function that can be mapped to the 

function of the original sensor, whether directly or indirectly, then the mapping process 

Table 9.  Types of Capability Mapping. 

TYPE DESCRIPTION 

Direct Capability 

Mapping 

The capability being mapped and the sensor being 

considered perform the exact same function, e.g. both detect 

the same phenomena. 

Indirect Capability 

Mapping 

The original capability is accomplished via a mathematical 

relationship between the phenomena detected/measured and 

the phenomena needed. 

Original Capability: measure velocity 

Low SWaP Capability: measures displacement / time, 

therefore, velocity obtained via V = Δd / Δt  
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has identified a potential area of research and development (R&D).  This means that if 

the unmapped functions of the capability are needed then the design specifications for 

those functions have been compiled into the MOE.  Therefore, from the MOE, developers 

can determine if an existing sensor can be modified, a new sensor needs to be developed, 

or if the functionality is simply impossible to accomplish in a low SWaP scale/package.  

Finding an answer to these questions is an R&D project by itself but would guide the 

development or save time and funding by confirming what is and is not possible.    

The low SWaP sensor‟s has its own performance specifications with uncertainty 

which allows a MOE to be defined.  The sensor‟s MOE will play an important role in the 

decision process.  Every low SWaP sensor must meet a defined minimum level of 

performance and specify any limitations to its support structure.  The MOE from the 

original sensor will serve as the starting point.  In regards to the MOP, if the low SWaP 

sensor can meet the original sensor‟s threshold (original MOP) then the sensor is deemed 

functionally acceptable.  If the low SWaP sensor cannot meet the MOP required by the 

original capability, then an analysis of what is good enough is needed.  The concept of 

good enough was discussed earlier and would require stakeholders and developers to 

make a trade between: cost, schedule, performance, and possibly other characteristics.  

The decision would require defining a good enough acceptance level which could be 

specified as a percentage of the original, e.g. an 80% may be acceptable due to the 

quicker schedule and lower cost.  The decision could also be easy to make if having some 

capability was better than none at all.  As an example, return to the determination of an 

object‟s velocity, first defining or noting the sensor‟s uncertainty.  Suppose a low SWaP 

sensor with the functionality to measure displacement and time had the following 
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uncertainties: displacement sensor: ±20% and time sensor; ±15%.  The uncertainty of the 

velocity (i.e. desired function) after computation would be ±35%.  If the original sensor 

had an uncertainty of ±10% then the low SWaP sensor would not meet the MOP.  

However, if stakeholders and developers deemed the ±35% uncertainty good enough then 

the low SWaP sensor would be accepted.  If the low SWaP sensor could not meet the 

good enough level of the MOP, then once again an area of R&D has been revealed.  If 

any of the functions are not met and deemed essential then developers know exactly 

where to start and have quantitative data as a starting point.  Thus, even if a sensor (with 

needed functions) is not available or cannot meet the defined good enough MOP level, 

the mapping process is not a wasted effort. 

The MOS is also part of the MOE.  It identifies any factor that must be met in 

order for a low SWaP sensor to operate in the intended environment.  This would include 

any requirements of specific orbital parameters, specific communication with a 

neighboring satellite, or any other factor that would hinder the expected performance.  

Therefore, as the requirements are decomposed from the system level down to sensor 

level any characteristic related to the function and/or performance must be captured in the 

MOS.  This would be found earlier that the sensor level requirements either at the 

system/spacecraft or payload requirements.  For example, if a sensor relied on data from 

a second sensor (which then includes communication) in a different location to perform a 

computation prior to downloading data, then any requirements that specify the distance, 

altitude, orbit, inclination or any other parameter must be captured in the MOS.  The 

integration of the sensor into the CubeSat is a process that is common among all 

spacecraft development, and therefore discussed briefly.  The integration process 
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determines the number of sensors and CubeSats that will be required to meet the 

threshold performance level of the mission as defined by the original requirements. The 

exact number of CubeSats will depend on two factors.  First, the SWaP of each sensor 

will determine how many will physically fit into the bus.  Second, the coverage will 

determine the quantity of CubeSats required in the final constellation.  

3.4  Summary 

The capabilities mapping process is a synergistic method that utilizes the 

successful experimentation of low SWaP sensors, exploits the standardization of the 

CubeSat bus, enables decision makers with quantitative data to determine what is good 

enough, and specifies the functionality to be developed by the R&D community.  There 

are many mission areas the process could be applied but the popularity of experimental 

space weather sensor makes it the best choice for application.  The capabilities mapping 

process will be applied to the SESS that was de-manifested from the NPOESS program. 
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4.  Analysis, and Results 

4.1  Overview 

The capabilities mapping process separates a system into its basic functions so 

those functions can be mapped to low SWaP sensors that perform the same functions or 

produce the same products.  This presents stakeholders and developers with a tool to 

begin the development of a small satellite capable of doing the mission of a large 

spacecraft.  The data (metrics) obtained from the process also enables developers to 

determine if the low SWaP sensor will meet the threshold of the original sensor and if 

not, then what is good enough for the mission.  If neither of these is satisfied, then the 

data obtained would provide specific guidance for additional R&D efforts.  The 

knowledge gained from the mapping process is discussed below as well as what next 

steps would benefit the process and the space community. 

Space weather has already been identified as the best application for smallsats and 

the popular among academic experiments.  Therefore, since there is a significant space 

weather monitoring gap following the problems of the NPOESS program, the best 

application of the capabilities mapping process would be to selected sensors on the SESS 

no longer included.  If successful, it will link the academic experimental space weather 

projects to an actual operational mission and provide developers with a process 

framework to evolve.  The application that follows attempts to make the square peg fit 

into the round hole. 

4.2  Application of the Capabilities Mapping Process 

The de-manifested SESS was intended to collect and provide data for selected 

space environmental parameters. Once relayed to the ground stations, the data would 
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have been ingested into a modeling system that analyzes the data and produces an EDR. 

The loss of the SESS will leave the United States with either lost or severely degraded 

capabilities as shown in a previous section.  As discussed above and shown in Table 6, 

the SESS contains five instruments.  Of these five instruments, the capabilities mapping 

process will be demonstrated on the Thermal Particle Sensor (TPS) to determine if its 

capabilities can be mapped to a set of low SWaP sensors capable of monitoring the 

required space weather phenomena. The TPS is a set of plasma collectors used to 

measure and characterize the densities, temperature, and drifts of the thermal ionospheric 

plasma at satellite altitude [5].  It is the primary provider of data for three EDRs as shown 

in Figure 8 above. The Initial Operating Requirements Document (IORD II) for the 

NPOESS space environment monitoring mission was revalidated in 2006 by the Joint 

Requirements Oversight Council (JROC) and have not changed [11]. These requirements 

and the EDRs (deliverable) will define the metrics by which the selected low SWaP 

sensors will be verified and validated.  

The TPS is identified as the capability of interest and therefore will undergo a 

system, functional, and requirements decomposition.  The TPS capabilities mapping 

process will treat the TPS as an instrument comprised of four sensors.  Therefore, the 

TPS capabilities mapping goal is to identify and isolate all functions of the TPS 

instrument and map those to like functions performed by a low SWaP, CubeSat 

compatible sensor.  There will be no other capabilities included in the TPS capabilities 

mapping process; however, if a selected sensor has the capability to detect different 

phenomena in addition to that required, then those capabilities will be referred to as 

secondary and considered for use as long as they do not interfere with the TPS 
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capabilities mapping.  An analysis of the MOE for the TPS instrument capability and the 

selected low SWaP capability will support the final decision. 

System and Requirements Decomposition 

With the capability of interest identified, the capabilities mapping process starts 

by performing the system and requirements decomposition as shown in Figure 19.   

The requirements decomposition allows the TPS sensor requirements to be 

separated from top level system requirements.  Caution must be taken not to overlook any 

requirements that pertain to the ability of the sensor to perform its functions in the 

intended environment specified by the system, spacecraft, or payload requirement, e.g. 

proximity of another sensor, spacecraft, etc.  These requirements must be carried through 

the requirements decomposition and recorded during the development of the MOEs.  The 

requirements decomposition examines the Integrated Operational Requirements 

Document (IORD-II) and concludes with sensor requirements 4.1.6.7.4, 4.1.6.7.7, and 

4.1.6.7.8 as shown in Figure 19.  

The system decomposition starts with the system (i.e. spacecraft, ground stations, 

relay satellites, etc.), separates the spacecraft, and continues with the payload and 

instruments.  The system decomposition ultimately identifies all sensors and isolates the 

specific sensor that performs the capability of interest.  The TPS instrument shown as 

1.1.1 in Figure 19 is accomplished by the functions performed by four sensors: Plasma 

Drift Meter, Faraday Cup / Retarding Potential Analyzer, and Langmuir Probe.  Since the 

TPS performs the capability of interest, these four sensors will be functionally 

decomposed.  
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Functional Decomposition 

The functional decomposition begins by identifying the three attributes 

(requirements, deliverable, and capability) for each sensor as shown in Figure 20.  The 

requirement and deliverable attribute are assigned five digit prefixes that correspond to 

the specific sensor.  The IORD-II defines the requirement and deliverable for each sensor 

by three EDRs produced using data from these sensors.  These EDRs are the Electric 

Field, In-situ Plasma Temperatures, and In-situ Plasma Fluctuations EDRs [5].  

Therefore, the requirements for the delivered EDR (i.e. thresholds/objectives) will define 

the two attributes, requirement and deliverable.  The capability attribute is defined by 

performing the functional decomposition and identifying all functions performed by each 

P 1.4P 1.3  SESS

1.3.1
TPS

1.3.2 
LEPS

1.3.1.2
Langmuir

Probe

1.0 IORD II:  4.1
SYSTEM REQUIREMENTS

1.2  IORD II:  4.1.6
PAYLOAD REQUIREMENTS

1.3.1-5  IORD II:  4.1.6.7
INSTRUMENT  REQUIREMENTS

SYSTEM
DECOMPOSITION

1.3.1.1 – 4  IORD II:  
4.1.6.7.4 / 4.1.6.7.7 / 4.1.6.7.8

SENSOR  REQUIREMENTS

P 1.5

1.0
SPACECRAFT

1.3.3 
MEPS

1.3.1.4
Faraday

Cup

1.3.1.3
Retarding
Potential
Analyzer

REQUIREMENTS 
DECOMPOSITION

NPOESS IORD - II

P 1.2P 1.1

1.3.4
HEPS

1.3.5 
AURORA

1.3.1.1
Plasma 

Drift
Meter

Figure 19.  System and Requirements Decomposition. 
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sensor.  As shown in Figure 20, there are a total of eight functions performed by the four 

TPS sensors.  The separation of these functions allows them to be examined one by one.  

Figure 20 color codes the functions to show which EDR they support.  These functions 

will be mapped after their metrics have been defined and low SWaP candidate sensors 

identified.   

Metrics 

Mapping the functions identified is only part of the mapping process.  These 

functions need metrics in order to know whether the low SWaP sensor can perform the 

mission.  The completion of the system, functional, and requirements decomposition 

provides the information needed to establish the MOE for the capability, i.e. sensor 

functions.  Since the requirement and deliverable are defined by the EDR, the need to 

1.3.1.1.1  
REQUIREMENT

1.3.1.1.3
CAPABILITY

1.3.1.1.2
DELIVERABLE

1.3.1.3 
Retarding 
Potential 
Analyzer

1.3.1.1.3.2  FUNCTION
Measure the vertical 
cross-track of the local 
ionosphere

1.3.1.1.3.1  FUNCTION
Measure horizontal 
cross-track of the local 
ionosphere

1.3.1.2 
Langmuir

Probe

1.3.1.1 
Plasma 

Drift 
Meter

1.3.1.4 
Faraday

Cup

1.3.1.2.1  
REQUIREMENT

1.3.1.2.3
CAPABILITY

1.3.1.2.2
DELIVERABLE

1.3.1.2.3.2  FUNCTION
Measure electron 
density in local plasma 
environment

1.3.1.2.3.1  FUNCTION
Measure electron 
temperature in local 
plasma environment

1.3.1.3.1  
REQUIREMENT

1.3.1.3.3
CAPABILITY

1.3.1.3.2
DELIVERABLE

1.3.1.3.3.2  FUNCTION
Measure ion density in 
local ionosphere

1.3.1.3.3.1  FUNCTION
Measure ion 
temperature in local 
ionosphere

1.3.1.3.3.3  FUNCTION
Measure ion mass in 
local ionosphere

1.3.1.4.1  
REQUIREMENT

1.3.1.4.3
CAPABILITY

1.3.1.4.2
DELIVERABLE

1.3.1.4.3.1  FUNCTION
Measure ion 
temperature in local 
ionosphere

Electric Field In-situ Plasma TemperaturesIn-situ Plasma Fluctuations

Figure 20.  TPS Functional Decomposition 
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compare and combine these attributes into a MOE is not needed.  The MOEs for the TPS 

will be defined by the threshold and objectives for the Electric Field, In-situ Plasma 

Temperature, and In-situ Plasma Fluctuations EDRs (Table 10).  The formulation of these 

MOEs and how they relate the quantitative metric to function are shown graphically in 

Appendix A.   

Low SWaP Sensor Selection Criteria 

Since there are few spacecraft components, especially low SWaP sensors, 

available as commercial off the shelf (COTS), research and inquiries will have to be done 

with industry and academia.  The search for these sensors will require some selection 

criteria.  The standardized CubeSat bus simplifies the establishment of selection criteria 

by providing the CubeSat Design Specifications Document [28] published by Cal Poly.  

Table 10.  TPS Metrics - Defined by Environmental Data Records [29] 

EDR  (TPS Metrics) Sensor MOEs per EDR 

Electric Field 

An in-situ measure of the ambient 
electric field. 

MOP:   

- Measurement Range: 0 to ±150 mV/m 
- Horizontal Cell Size: 10 km 

- Horizontal Reporting Interval: 10 km 

- Measurement Uncertainty: 3.0 mV/m 
 

In-situ Plasma Fluctuations 

In-situ measurement of plasma 

density fluctuations. 

MOP: 

- Measurement range:   

  -- Mean Plasma Density: 5x10
3
 to 5x10

6
 cm

-3 

  -- Fluctuation Scale Length: 5 to 10
4
 m 

  -- Spectral Index: 1 to 5 

  -- δn / n 
- Measurement Uncertainty: 

  -- Mean Plasma Density: 20% 

 

In-situ Plasma Temperatures 
In-situ measurements of the electron 

and ion temperatures. 

MOP: 
- Measurement range:  500-10,000 K 

- Measurement Uncertainty:  10% 
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These specifications expedite the development of the bus.  The available sizes of the 

CubeSat were discussed above in chapter two.  In regards to the subsystem and payload, 

establishing SWaP criteria for selecting low SWaP sensors can only be accomplished by 

considering the various CubeSat sizes (e.g. 1U, 2U, 3U, etc.) which limits the solar panel 

sizes thus having an impact on the batteries.  The low SWaP sensors will have to be 

selected first in order for the developers to determine the true overall SWaP.  Therefore 

the integration of each low SWaP sensor into a properly sized payload will require an 

analysis involving power, mass, and volume once selected.  

Four sensors were considered for the TPS capabilities mapping process and are 

listed with a description of their functions in Appendix A.  These low SWaP sensors have 

an experimental status and their metrics may be based on lab test results.  If a sensor has 

flown, then it should have on-orbit performance data to better define the MOE.  The data, 

whether it is from a lab or on-orbit experiment, will be used to define the MOE.  The 

WINCS sensor will be selected to demonstrate the process of defining an MOE for a low 

SWaP sensor.  The other three sensors will be used only to illustrate a function-to-

function mapping process.   

WINCS simultaneously provides the full ion-drift vector, ion densities, and ion 

temperatures.  These follow from the measured angular-energy distributions of the ion 

flux developed by the satellite velocity.  The ion drift can be translated to deliver the data 

required by the Electric Field EDR.  The electric field associated with plasma moving in 

a magnetic field is given by equation 1 where E is the electric field, V is the velocity, and 

B is the magnetic field [27].  Thus, WINCS can provide an in-situ measurement of the 

E = - V x B                                                        1.0 
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electric field using its functionality to measure the ion-drift vector and applying equation 

1.0.  The MOE for WINCS is given in Table 11. 

Mapping 

With the low SWaP MOE defined, the TPS mapping process continues by 

mapping the functions of the low SWaP sensors to the TPS sensor functions.  As shown 

in Figure 21, the functions decomposed from the TPS sensors are listed on the left and 

the functions performed by each low SWaP sensor on the right.  The functions of the TPS 

sensors are color coded to indicate which EDR they support.  Similarily, the functions of 

the low SWaP sensors are color coded to indicate which sensor they come from.  If the 

functions have been defined and described in like terms then the mapping process looks 

for matching descriptions.  For example, the TPS function 1.1.1.3.3.2, measure ion 

density in local ionosphere, maps to the WINCS function described as measure ion 

density.  The only difference is the location specified in the TPS function.  It specifies the 

location as the local ionosphere which should also be in the system or payload 

requirements and recorded in the MOS.  As they stand, these two functions are the same 

but in order for the WINCS to completely satisfy the original function an in-situ 

configuration with orbital parameters specified by the MOS will be required.  As Figure 

21 shows, all eight functions map to a function performed by one or more low SWaP 

Table 11.  WINCS MOE (Electric field translated from ion drifts) 

EDR  (WINCS) Sensor MOE 

Electric Field 
An in-situ measurement. 

MOP (threshold):   
- Measurement Range: 0 to ±150 mV/m 

- Measurement Uncertainty: 3.0 mV/m 
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sensor.  This only identifies like functions, the next step is to use the MOEs for matching 

functions and determine if the low SWaP sensor can perform as well as the original.  

MOE Analysis 

The analysis of the MOEs for mapped functions will be demonstrated by the two 

WINCS functions that map to the two functions supporting the Electric Field EDR.  

Figure 22 shows the analysis between the MOE of the TPS functions and the WINCS 

sensor.  Examination of the WINCS sensor reveals that its measurement range and 

uncertainty meet the MOP required for the Electric Field EDR.  This analysis is a 

confirmation that the WINCS functions can deliver the same performance as the TPS 

1.3.1.1.3.1 – Measure horizontal cross-track motion of local 
ionosphere

TPS CAPABILITY (SENSOR) FUNCTIONS

Measure plasma density

LOW SWaP SENSOR

Measure plasma temperature 

Measure vertical cross-track drift

iMESA 

Measure horizontal cross-track drift

Measure horizontal in-track drift

Measure ion density

Measure ion temperature

WINCS

RO - vertical electron density

RO - ionospheric total electron content

GPS RO

Measure airglow (ver profile)

UV Photometer

1.3.1.1.3.2 – Measure vertical cross-track motion of local 
ionosphere

1.3.1.2.3.1 – Measure electron temperature in local plasma 
environment

1.3.1.2.3.2 – Measure electron density in local plasma environment

1.3.1.3.3.1 – Measure ion temperature in local ionosphere

1.3.1.3.3.2 – Measure ion density in local ionosphere

1.3.1.3.3.3 – Measure ion mass in local ionosphere

1.3.1.4.3.1 – Measure ion temperature in local ionosphere

EDR - Electric Field

EDR - In-situ Plasma Fluctuations

EDR - In-situ Plasma Temperatures

Figure 21.  TPS Mapping Process 
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functions that currently support the Electric Field EDR.  The MOS specifies that the 

Electric Field is to be monitored in the local ionosphere [29].  The advantages of the 

CubeSat is that it can be flown inexpensively in numerous orbits providing excellent 

global coverage that is difficult for larger systems to achieve.  Not because of their 

performance but the cost of putting a large quantity of spacecraft in different orbits.  

Thus, these low SWaP sensors not only meet the original metrics but several advantages 

to global coverage.  The conclusion is to integrate the sensors onto a CubeSat.The second 

involves meeting the threshold value of the MOE.  As an example, suppose the WINCS 

measurement range for the electric field was ±120 mV/m.  This performance would not 

WINCSEDR - Electric Field  (Plasma Drift Meter)

MOE: Electric Field EDR
Parameter Threshold Objective

Measurement Range 0 to
±150 mV / m

0 to 
±250 mV / m

Measurement Precision 2.0  mV/m 0.1  mV/m

Measurement Uncertainty 3.0  mV/m 0.1  mV/m

MOE: Electric Field EDR
Parameter Threshold Objective

Measurement Range 0 to
±150 mV / m

0 to 
±250 mV / m

Measurement Precision 2.0  mV/m 0.1  mV/m

Measurement Uncertainty 3.0  mV/m 0.1  mV/m

ANALYZE

DOES NOT MEETDEGRADEDMEETS

CONSIDER ADDITIONAL 
RESEARCH & 

DEVELOPMENT
FUNDING

ANALYZE

GOOD ENOUGH
≥ 60% MOE

SENSOR
INTEGRATION

VERIFICATION & VALIDATION

DETERMINE NUMBER OF 
CUBESATS NEEDED

Figure 22.  Measure of Effectiveness Analaysis 
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meet the threshold value and only deliver 80% of the TPS MOE.  Therefore, stakeholders 

must decide if 80% is good enough, better than nothing (in this case), or should be 

recommended for additional R&D funding.  Even when the capability mapping process 

doesn‟t reveal a complete solution or one that meets 100% of the MOEs, it enables 

stakeholders and developers with quantitative data to make decisions.  In addition, it 

defines the exact area to apply this development, which requires funding. 

4.3  Results 

The WINCS and iMESA sensors perform the same functions as the original TPS 

sensors.  The requirements of the original system that are captured by the MOE are key in 

determining the if these sensors can deliver the performance.  The MOE offers 

developers a quantitative method of showing stakeholders low SWaP sensors are ready to 

compete with large-scale legacy payloads, instruments, or sensors.   

The WINCS sensor represents a solution proposed by the capabilities mapping 

process.  This solution can be supported by the quantitative data contained in and used by 

the MOE.  In addition to meeting performance, Figure 20 shows WINCS contains the 

additional function of measuring the horizontal in-track drift which was not part of the 

original sensor.  This demonstrates the increase in capability while reducing the SWaP.  

The SWaP for the TPS is proprietary information and could not be obtained but it is safe 

to say the TPS would not meet payload criteria for the CubeSat, thus making the low 

SWaP WINCS and iMESA sensors, a smaller, lighter, and less expensive payload to 

launch.  The conclusion chapter will discuss the recommendation to expand the 

capabilities mapping process by studying additional functions, e.g. all five instruments on 

the SESS, and how these functions would perform on orbit.   
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The requirements decomposition led to the exact technical information needed to 

define the MOEs for the sensors functions.  The objective and threshold supported the 

MOP while the orbital parameters and relationship with other components were 

contained in the MOS.  The WINCS sensor met the threshold and objective which 

provides quantitative data to proceed.  The requirements contain the technical 

information that describes what the system is expected and how well.  The MOE applies 

this technical information to each applicable function so that the functions can be mapped 

as package.  Thus, the function and its requirement can stand alone as a single entity.  If 

any function were to be singled out for mapping or development purposes, all pertinent 

information would be readily available as opposed to just the function which provides 

any developer with a description of the sensor and how well it must perform.  The 

developer benefits by identifying advanced sensors with the same functions.  If that 

function does not exist, the function descriptions can be distributed to industry, academia, 

or lab that may be researching and developing the function in a low SWaP sensor.   

The mapping process identifies two sensors that can deliver the data required for 

three EDRs, Electric Field, In-situ Plasma Fluctuations, and In-situ Plasma Temperature.  

The next step is to determine how well a CubeSat with the sensor identified by the 

mapping process will perform on-orbit. 

4.4  Summary 

The application of the capabilities mapping process to the TPS sensor 

successfully proves low SWaP sensors have potential if not operational capability.  Space 

weather should be considered as a starting point.  The more other capabilities and their 

functions are understood, via the system and functional decomposition, the better they 
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can be mapped to a low SWaP solution or defined for low SWaP R&D.  The capabilities 

mapping process is the link between large-scale satellite capabilities and a smallsat 

solution.  The next chapter will discuss the analysis and results from the capabilities 

mapping process. 

The results from the application above support and suggest that the WINCS and 

iMESA sensors could perform the mission but there is more to be studied.  The data 

provided by the MOE proves the functions can be performed but other factors must be 

considered.  These factors are discussed in the next chapter.  

 

 



 

 69 

5.  Conclusions and Recommendation 

5.1  Chapter Overview 

The capabilities mapping process is the first step toward a repeatable process that 

utilizes CubeSats to perform missions of large satellites.  As discussed below the process 

contributes by introducing a new paradigm to the status quo of spacecraft development.  

The process creates a framework for developers to work with and expand while 

maintaining stakeholder‟s confidence with the satisfaction of requirements.   

5.2  Contribution to the Body of Knowledge 

Through the process of the system and functional decomposition, the system can 

be viewed in terms of its most basic functions.  As each of those parts are analyzed and 

mapped to a smaller equivalent, the power consumed, specific material used, and its mass 

can be reviewed and given the opportunity to be improved or replaced by one more 

efficient.  The capability mapping process reveals the return (what the system is doing 

and delivering) on the investment (mass and power of the original system).  The 

capabilities mapping process leads to a low SWaP set of sensors, as long as they exist, 

that makes integrating them into one, two, or more CubeSats more efficient.  As research 

and development of low SWaP sensors and standardized CubeSat components continue, 

the number of low SWaP sensors available will increase thus presenting diverse 

capabilities (functions) for more mission areas.  This will allow the process of mapping 

capabilities to be more expansive and expeditious.   

In addition to the knowledge gained about the original spacecraft, the capabilities 

mapping process provides a new future for the dozens of experimental, low SWaP sensor 

within industry and academia.  In fact, any spacecraft payload could be systematically 
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and functionally decomposed to its basic functions only to have the list of functions and 

MOEs released to industry and academia for development consideration.  In this mode, 

the capabilities mapping process is guiding the marketplace of future low SWaP sensors.  

Add to this the standardized bus of the CubeSat and the development is even further 

simplified.  Thus, the capabilities mapping process establishes the development criteria 

(by providing functions) and the CubeSat standards provides a standard bus and 

subsystems.  All the developer has to do is build the sensor (capability) to meet the 

criteria and make sure it fits in a CubeSat bus.  It is not quite that simple but the evolution 

and trend of small satellites in general is moving in that direction. 

5.3  Benefits of Capabilities Mapping   

There a several benefits of having a process that maps large-scale capabilities to 

small satellites.  Aside from those presented by challenges like NPOESS, the capabilites 

mapping process present the opportunity to map almost any capability from a large 

satellite. 

The process produces quantitative data that stakeholders can use to make 

decisions.  If a user needed only a few of the capabilities contained on a spacecraft and in 

a different orbit, the capabilities mapping process could decompose the specific 

capabilities of that system and identify the exact functions needed, if low SWaP sensors 

with those same functions existed (via direct or indirect mapping), and if the CubeSat bus 

could be the solution to that user‟s needs.  Once again, if the low SWaP sensors do not 

exist, the specific functions with quantitative metrics are available to provide to 

developers (industry, academia) eager to take the challenge of developing a low SWaP 

sensor. 
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Resources are utilized and not wasted nor recreated.  As shown in the 

requirements decomposition, the requirements that may have taken a year or more to 

create and approve are reused to create metrics that will evaluate a selected low SWaP 

sensor.  Also, if no low SWaP sensor (function) exists, the reused requirements can be 

applied to an advertisement distributed to industry or academia to develop the sensor. 

CubeSats have been used almost exclusively to perform on orbit technology 

demonstrations.  Those demonstrations represent technology that could serve an 

operational mission.  The capabilities mapping process is a link not only between large 

and small capabilities, but also experimental to operational. 

Lastly, the risk is low when employing the capabilities mapping process.  The 

sensors may be experimental but that alone consumes a lot risk.  If the experimentation 

was not successful then it would not be considered a candidate low SWaP sensor.  But if 

the experiment were successful and hence overcame the risks, then integrating it as a 

replacement for a large-scale capability brings little risk.  At the same time, the 

technology can be refreshed more frequently allowing the lower TRL level sensors to 

mature.  For example, during a three year mission, the sensor being flown could be 

advanced, its functions studied and documented, and provide guidance and lessons 

learned for future sensors. 

5.4  The Future of Capabilities Mapping 

Since space weather is strongly recommended as an excellent mission area, the 

data collected by WINCS and iMESA sensors should be ingested into the current models 

used by DMSP.  This would not only validate their performance but also the capabilities 

mapping process.   The need for a process such as that developed in this thesis is certainly 
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needed since smaller satellites are getting more interest, budgets continue to shrink, and 

user needs change for frequently.  Consider a database of CubeSats that deliver one, two, 

or more capabilities that could be developed and put in orbit in 12 months.  The CubeSats 

in this database could be the result of the capabilities mapping process.  That is, as 

capabilities of interest are selected and found to have an acceptable low SWaP 

equivalent, the solution should go into the database for other users.  There is clearly a 

future for the capabilities mapping process.  The process instroduced in this thesis is only 

the foundation for a larger framework.  The capabilities mapping process would benefit 

from additional research that would take the individual CubeSat with their low SWaP 

payload and predict its success on orbit.  Since the MOS records all system, spacecraft, 

and payload requirements during the system and requirements decomposition, it provides 

the information to develop a model and simulation of one CubeSat or a constellation for 

various orbital parameters.  A simulation would allow the CubeSat to be integrated, 

tested, and evaluated as part of a larger network that determines the optimum number of 

CubeSats to fly.  It would also support a mission concept to illustrate data rates, 

autonomous operations, or other system parameters that make up the CONOPs.  This 

information could be used to propose the CubeSat solution to government program 

offices or commercial companies.  If all requirement data is captured by the MOE and 

used to define the simulation, the risks, trades, and limitation could be better understood. 

Thus, the ability to map large-scale capabilities to a constellation of CubeSats 

would mark a significant milestone in the utilization of small satellites.  Most 

importantly, the quantitative data brought through the full process of mapping capabilities 

to simulating a constellation on orbit would validate the solution to stakeholders. 
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5.5  Conclusion 

The capabilities mapping process is a logical procedure that improves the 

understanding of the original sensor and the system by analyzing the functional 

relationships among the requirements.  It utilizes the input from stakeholders to 

understand what the original system must do and how well it must perform.  The reuse of 

this information both expedites and guarantees the mapping process identifies a solution 

that will perform to the level as the original capability. 

As shown, the SWx mission can utilize small satellites, such as nanosats, as an 

alternative to large satellites. However, low SWaP technology must exist for capabilities 

to be mapped. In some cases such as imagery, the required sensor or hardware may have 

physical limitations preventing a low SWaP solution from being developed. However, the 

capabilities mapping process shows that it is a realistic process. While the term 

capabilities is used as a target, it cannot guide the process alone. In addition, the process 

needs the requirements, deliverable (e.g. EDRs), and all functions that complete the 

capability. The capabilities mapping process separates itself from other practices such as 

analysis of alternatives (AoA) or trade studies by capitalizing on existing and confirmed 

information. The process removes the item (e.g. legacy sensor) that is no longer available 

(e.g. removed for cost purposes) and utilizes what has been established and confirmed by 

stakeholders, i.e. requirements. The requirements, specified capability, and expected 

deliverable enable an efficient process that develops a low cost solution. The 

standardized bus of the CubeSat is equally important due to cost and schedule savings.  

Attention should be given to the technologies currently under development by 

private corporations, universities, and laboratories. Satellite sensor technologies continue 
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to increase in performance while their size, weight, and power are reduced. The 

operational success of a space weather monitoring CubeSat constellation encourages 

additional efforts to advance both sensor technologies and the CubeSat bus.  

In conclusion, a solution to a specific capability gap has been proposed that would cost a 

fraction of the original system. While the low cost solution brings a shorter on-orbit life, 

the need for frequent replacements provides opportunities to deliver improved 

capabilities at lower costs. This is because the continuous manufacturing line would more 

easily incorporate technology advances and provide greater quantity buys as an incentive 

for development. Thus, every two to five years you‟re replacing a generation with a new 

more advanced system. Most importantly, the cost remains lower than in the past. The 

recent disbanding of NPOESS creates an opportunity to exploit small satellites and 

sensors as well as rethinking the way space systems are procured. 
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Appendix A.  Selected Low SWaP, CubeSat Compatible Sensors 

Sensor Name Sensor Function and SWaP 

Winds-Ion-Neutrals Composition 

Suite & Miniature Electrostatic 
Analyzer  (WINCS+) 

Measure drift (vertical/horizontal cross-track and 

horizontal  in-track), ion density/temperature 
 

SWaP: 

Dimensions (cm): 7.6 x 7.6 x 7.1 

Volume (cm
3
): 410.1 

Weight (kg): < 0.6 

Power (W): < 2.3 

Integrated Miniaturized Electrostatic 

Analyzer (iMESA) Electronics 

 

Measure plasma density and temperature 

 

SWaP: 

Dimensions (cm): 7.5 x 2.5 x 1.5 
Volume (cm

3
): 28.1 

Weight (kg): < 0.3 

Power (W): < 0.8 

GPS Occultation Remote observation of ionospheric total electron 

content and vertical electron density 
 

SWaP: 

GPS Dimensions (cm): 6 x 10 x 1.3 

GPS Volume (cm
3
): 78 

GPS Weight (kg): < 0.1 

GPS Power (W): < 1 

 
Antenna Dimensions (cm): 5.6 x 8.6 x 1.4 

Antenna Volume (cm
3
): 67.4 

Antenna Weight (kg): < 0.15 
Antenna Power (W): < 1 

UV Photometer Measure airglow and derive electron density 
distribution 

 

SWaP: 
Dimensions (cm): 10 x 10 x 15 

Volume (cm
3
):  1500 

Weight (kg): < 1 
Power (W): < 2.5 
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 Appendix B.  TPS Measure of Performance 
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